
0018-9162/02/$17.00 © 2002 IEEE September 2002 39

C O V E R F E A T U R E

PICO:
Automatically
Designing
Custom
Computers

cation written in C to architect a set of high-qual-
ity system designs that trade cost for performance.

As Figure 1 shows, a PICO system design con-
tains one EPIC/ VLIW (explicitly parallel instruc-
tion computing/very long instruction word) pro-
cessor1 and an optional nonprogrammable accel-
erator (NPA) subsystem consisting of one or more
NPAs, both connected to a two-level cache sub-
system that, in turn, connects to the system bus.
Each NPA is customized to execute a compute-
intensive loop nest that would otherwise have been
executed on the VLIW.

PICO generates the most cost-effective combi-
nations of these subsystems to provide several high-
quality system designs at varying points on the
cost-performance tradeoff curve. PICO emits struc-
tural Verilog/VHDL for the hardware components,
modifies application code to include software inter-
faces to the generated hardware, and retargets the
compiler, assembler, and simulator to the custom
VLIW processor.

Skeptics often assume that automated design
must emulate human designers who can invent new
solutions to problems. PICO’s approach, however,
is to automatically pick the most suitable designs
from a large, well-engineered space of designs. In
practice, it would be unrealistic for all designs to be

The PICO project automates the design
of optimized, application-specific embed-
ded computer systems to meet the
demands of innovative smart products
that require varying combinations of
performance and cost.

Vinod Kathail

Shail Aditya

Robert
Schreiber

B. Ramakrishna
Rau

Darren C.
Cronquist

Mukund
Sivaraman
Hewlett-Packard
Laboratories

Embedded computers are everywhere—in
video games, DVD players, TV sets, printers,
scanners, cell phones, cars, and now even in
smart robotic vacuum cleaners, lawnmow-
ers, and virtual pets. Computers have dis-

placed many analog circuits in photography, video,
and telephony. The advent of system-level integra-
tion (SLI) foreshadows an era of yet more growth
in the number and variety of innovative smart prod-
ucts and their embedded computers.

Such smart products demand varying combina-
tions of performance, cost, and power. When a prod-
uct mandates high performance, often the challenge
is to lower cost to a level the market will accept.
Whereas specialization increases performance and
reduces cost, customization permits specialization
when no adequately specialized, off-the-shelf design
is available. Automation of embedded computer
design would enable customization by lowering the
barriers of design time, designer availability, and
design cost, thereby unleashing the predicted explo-
sion in smart products.

PICO ARCHITECTURE SYNTHESIS SYSTEM
The PICO (program in, chip out) project at HP

Labs automates the design of optimized, applica-
tion-specific computer systems. PICO uses an appli-

40 Computer

preconstructed, so PICO’s framework-based, hier-
archical design methodology creates designs on
demand during design space exploration.

FRAMEWORK-BASED AUTOMATION
Figure 2 shows PICO’s framework-based design

automation strategy. A framework consists of

• a parameterized architectural template that
defines the space of designs to be considered,

• a spacewalker with a strategy for exploring the
design space,

• a constructor that can construct every design
in this space using components from a com-
ponent library, and

• an evaluator that can measure the quality of
any such design.

These elements together provide the basis for auto-
matically identifying an approximate Pareto set—
a set of designs, each of which is better than any
other design in at least one measure of quality.

Template. The template defines parameters repre-
senting the design space and a set of rules and con-
straints that must be honored. Within the template,
some aspects of the design, such as the presence of
certain modules and how they connect, are prede-
termined. Architectural parameters specify other
aspects of the design. For example, the number of
memory ports in a processor might be a parame-
ter in a processor design space. Once the parame-
ters have been specified, a detailed construction of
the design determines many of its other attributes.
For example, the VLIW constructor determines a
VLIW processor’s instruction format.

When we have established an optimal or near-
optimal algorithmic way of determining the design
details, we view their definition as part of the con-
struction task. When we have no clear way of deter-
mining a design’s important aspects and must use
a heuristic search to determine good values, we
view these attributes as parameters. The number of
parameters should be relatively small to be man-
ageable. A specification is the set of values to which
the parameters are bound and corresponds to a
unique design.

Spacewalker. The set of all allowed parameter
value combinations in the template defines the
specification space. The spacewalker explores this
space, looking for the Pareto-optimal designs. The
template may fix the range of allowed values for a
parameter, the user may set the range, or the space-
walker may determine the range through a pre-
liminary examination of the application.

Using the quality metrics the evaluator provides,
the spacewalker determines whether any previously
examined design eclipses the new design—the new
design is either equal or inferior to the previous
design in all respects. If not, the new design is added
to the Pareto set, discarding all previous designs in
the set that the new design eclipses.

If a design space is too large to search exhaus-
tively, we use a manifold strategy to search the
design space more intelligently. The spacewalker
uses heuristics to examine designs that are likely to
be Pareto-optimal while avoiding the exploration of
uninteresting designs. The goal is to find most of
the Pareto-optimal designs while having examined
only a small fraction of the specification space.

The spacewalker also maintains a repository of

VLIW processor

L1
instruction cache

L2
unified cache

Memory
ports

Instruction fetch
and decode

Integer
register file

Predicate register file Local
memory
interface

Cache subsystem

System bus

Nonprogrammable accelerator

Cache interconnect

NPA data path

Done

Commands

Initialization data

L1
data cache

NPA subsystem

Floating-point
register file

Main
memory

NPA
control

interface

PE

PE

PE

IM

IM

PE

PE

PE

IM

IM

PE

PE

PEInteger
functional units

Floating-point
functional units

PE –Processing element
IM –Internal memory

Figure 1. PICO’s sys-
tem-level architec-
ture template. A sys-
tem consists of
three subsystems:
a custom EPIC/VLIW
processor; a
custom, two-level
cache hierarchy;
and, optionally, an
NPA subsystem that
includes one or more
custom NPAs.

previously explored designs to eliminate redundant
examination of the same design. Analytical cost
and performance modeling can help avoid con-
struction and evaluation costs entirely. Finally, we
use the basic divide-and-conquer paradigm, which
in this context takes the form of hierarchical design
and hierarchical design space exploration.

Constructor. Design construction derives a
detailed design from the specification provided by
the spacewalker. The spacewalker specification is,
of necessity, an abstract description of the machine
to be synthesized. The constructor fills in myriad
details using the abstract description to create the
best possible—and usually least costly—machine.

To construct the design, the constructor auto-
matically assembles lower-level components cho-
sen from a component library. Sometimes, these
components are parameterized with respect to their
structural properties such as bit width; once the
parameters are specified, a generator automatically
instantiates the specific component. The compo-
nents themselves are designed, optimized, and char-
acterized manually for properties such as area,
power, and latency.

Evaluator. The framework also requires an evalu-
ator that computes various metrics to assess the
detailed design, the design specification, or both.
In PICO, the cost of a design is measured in terms
of gates or silicon area, and its performance is mea-
sured in terms of the number of cycles to execute
the application via a combination of static estima-
tion and simulation.

HIERARCHICAL DESIGN
To limit design complexity, designers decompose

systems into subsystems that interact in a limited
way. Identifying the best subsystem designs and
then combining them to form complete systems

greatly reduces the system design space. A hierar-
chical design framework formalizes this intuitive
approach.

A hierarchical system design framework decom-
poses the system into several subsystem frameworks.
Each framework must include a template that defines
the subsystem specification space, a spacewalker, a
constructor, and an evaluator. Developers must define
a system framework’s specific decomposition strategy
while designing the system framework, prior to auto-
mating its design. System composition, on the other
hand, occurs during design space exploration.

System decomposition involves not only the sys-
tem template’s structural decomposition, but also
decomposition of the constructor and the evaluator.
As good software engineering practice demands, the
subsystem constructors are typically already in place.

However, the challenge is decomposing the sys-
tem evaluator. Subsystem evaluators can use dif-
ferent metrics than the system evaluator, but they
must be good indicators of system-level perfor-
mance. Specifically, the evaluators should reject
poor subsystems without omitting subsystems that
are system-level constituents of Pareto designs.

The key point in hierarchical design is that the
design space at each level in the hierarchy is
restricted to systems that can be built only from the
Pareto-optimal subsystems. This restriction greatly
reduces the size of the system design space that
must be explored.

Spacewalking without decomposition
Consider, for example, a computer system tem-

plate that consists of a processor and a data cache.
Based on the specified parameters and ranges for
these elements, suppose the system specification
space holds 5,000 designs. An exhaustive spacewalk
examines all 5,000 system specifications to find, for

September 2002 41

Workload and
requirements
specification

Component
library

Architecture
template

Spacewalker
(design space

explorer)

Evaluator

Design
specification
(parameters)

Design

Area

Ex
ec

ut
io

n
tim

e

Pareto-optimal designsSpecification space

Parameter
ranges

Constructor
(hardware, software,

simulators, and so on)

Figure 2. PICO’s
framework-based
automation strategy.
The PICO framework
consists of a
template, space-
walker, constructor,
evaluator, and com-
ponent library.

42 Computer

example, 15 Pareto designs. These specifications
comprise only 0.3 percent of the evaluated systems.
Hierarchical design aims to reduce the number of
designs examined without missing any Pareto points.

Spacewalking with decomposition
Consider a decomposition of the above system

framework into a hierarchy consisting of a proces-
sor and a cache framework, each with its own set
of parameters. Some system parameters become
parameters of only one subsystem; others affect
more than one subsystem. The exploration ranges
of the subsystem parameters are derived from those
of the system parameters. In addition, decomposi-
tion liberates some previously dependent system
attributes, such as cache ports, and makes them
independent subsystem parameters.

In this example, suppose there are 100 processor
and 100 cache designs in their respective specifica-
tion spaces, each containing 10 Pareto-optimal
designs. Then, an exhaustive spacewalk examines
only 300 designs—100 processor, 100 cache, and
100 system designs—to find the 15 Pareto designs,
raising the exploration efficiency to 5 percent.

System composition and evaluation
In a well-formed system, various subsystems

must obey certain interface constraints. In this
example, one of the interface constraints is that
processor load-and-store units—a processor sub-
system parameter—must be equal to the cache-

ports parameter of the cache subsystem. Such inter-
face constraints prevent subsystem designs from
being interchangeable: A one-port data cache can-
not be used in place of a two-port data cache, for
example. Spacewalking for subsystems must
account for this, or it will too aggressively remove
subsystem designs that are necessary for Pareto-
optimal system designs.

The system-level constructor must ensure that
it builds and evaluates only valid combinations of
subsystems. One possibility is to perform validity
filtering, forming all possible combinations of
Pareto subsystems and testing whether they satisfy
the interface constraints to weed out invalid sub-
system design combinations.2

When an interface constraint is a simple equality
or inequality involving subsystem parameters,
PICO avoids creating invalid systems altogether,
using Pareto sets indexed by parameters to con-
struct the valid systems directly.

PICO DESIGN FLOW
Figure 3 shows PICO’s hierarchical design space

exploration. After inputting a C application con-
taining one or more compute-intensive loop nests
or kernels (1), PICO first identifies and extracts
each kernel (2). Then the PICO-NPA spacewalker
repeatedly specifies an NPA, retaining only the best
NPA designs (3). For each specification, the NPA
constructor transforms the kernel to the requisite
level of parallelism and main memory bandwidth

NPA constructor

VLIW compiler

VLIW constructor

Cache constructor

NPA spacewalker

VLIW spacewalker

Cache spacewalker

NPA
parameters

VLIW
processor Control

interface

Input C code

Nonprogrammable
accelerator

PICO-generated system

VLIW code Compute-intensive
kernel

1

25

8

7

10

6
9

3

4

Executable

Cache
hierarchy

Cache
parameters

Machine
description
database

Abstract
architecture

specifications

Figure 3. PICO’s hier-
archical design flow.
The NPA, VLIW, and
cache subsystem
frameworks use the
input C application to
produce Pareto-opti-
mal subsystems
designs that are com-
posed to produce
Pareto-optimal sys-
tem designs.

and generates the register transfer level (RTL)
design for the NPA along with the VLIW code that
will repeatedly initialize and invoke the NPA (4).

At this point, using the combined VLIW code (5),
the PICO-VLIW spacewalker repeatedly specifies
a VLIW processor and retains only the best VLIW
designs (6). For each specification, the VLIW con-
structor designs the VLIW processor’s architecture
and microarchitecture and emits an RTL design (7).
In addition, the constructor generates a machine
description of this processor for the Elcor VLIW
compiler, which compiles the modified application
to the VLIW processor (8). The cache spacewalker
repeatedly specifies and evaluates cache subsystem
configurations, retaining only the Pareto-optimal
ones (9).

Finally, the system-level PICO spacewalker (not
shown in the figure) combines compatible VLIW,
cache, and NPA designs into Pareto-optimal sys-
tem designs (10). During this process, and for each
cost or performance level, PICO performs hard-
ware-software partitioning and codesign by deter-
mining which kernels should be implemented as
NPAs rather than as software on the VLIW.

NPA DESIGN
PICO-NPA accepts a loop nest in C, along

with a range of performance requirements and
available external memory bandwidth, and pro-
duces a Pareto set of NPAs customized for the given
loop nest.3 For each Pareto design, PICO emits
structural Verilog/VHDL that defines the NPA at
the register transfer level, as well as requisite ini-
tialization and invocation code for the external host
processor to execute.

Template
The NPA template consists of an array of cus-

tomized processing elements (PEs) with only syn-
chronous parallel nearest-neighbor communica-
tion, as Figure 4a shows. Further, the design can
contain internal memories (IMs), an interface to
external memory, and a memory-mapped host
processor interface. As Figure 4b shows, each PE

has a loop-specific instruction sequencer and a data
path consisting of

• functional units (FUs) with customized widths;
• distributed register structures with individual

read and write access from and to any regis-
ter, as opposed to addressable register files; and

• sparse interconnects customized to the loop
nest.

The data path lacks centralized instruction storage,
distributing the loop nest’s operations across the
FUs instead.

Constructor
First, a suite of loop-nest transformations and

optimizations determines the placement of data in
external memory, internal memory, or registers.
Then the constructor tiles the iteration space to min-
imize the number of registers required while maxi-
mizing available external memory bandwidth
utilization. The constructor schedules the loop iter-
ations in time and maps them to PEs using the avail-
able parallelism to meet the given performance
specification. Additional low-level optimizations
follow, both standard (common subexpression elim-
ination, dead code elimination, strength reduction)
and novel (data-width inference and clustering).

Then, the constructor allocates a least-cost set of
FUs capable of executing the operations in the opti-
mized loop nest at the desired performance level
given by its initiation interval (II) by solving an inte-
ger linear program. The constructor performs
modulo scheduling to determine each operation’s
issue time and to bind each operation to an FU, so
that each operation executes every II cycles without
conflicting for resources.

The constructor uses various heuristics that clus-
ter similar width operations and maximally share
storage and interconnect, minimizing hardware costs
prior to and during the scheduling and binding
phase. ShiftQ4—a novel hardware structure con-
sisting of registers and switches—buffers and trans-
ports operands between FUs. A dedicated ShiftQ

September 2002 43

FU

ShiftQs Static Literals

Sparse interconnect 1

Sparse interconnect 2

Sparse interconnect 1

Loop-specific
sequencer

Command
interface logic

External
bus

NPA data path

Done

Commands

Initialization data
NPA

control
interface

PE

PE

PE

IM

IM

PE

PE

PE

IM

IM

PE

PE

PE

NPA external
memory interface

(b)(a)

FU FU FU FU FU

Figure 4. The NPA
template. (a) An NPA
consists of a one- or
two-dimensional
array of customized
processing elements
(PEs), with only syn-
chronous parallel
nearest-neighbor
communication, and
internal memories
(IMs). (b) The given
loop nest computa-
tion largely
determines each
PE’s structure,
which consists of an
interconnected net-
work of functional
units and distributed
register structures
(ShiftQs).

44 Computer

for each FU minimizes the storage required for the
results produced by the FU. The constructor creates
connections from ShiftQ registers to FU inputs as
needed, resulting in a sparse interconnect structure.

The constructor generates the instruction se-
quencer and creates multiple copies of the PE, inter-
connecting them in the geometry the spacewalker
specifies. The constructor also generates internal
memories, interfaces to the host processor and exter-
nal memory, and provides arbitration and stalling
circuitry, if needed. Finally, the constructor emits
structural Verilog/VHDL for the NPA hardware and
generates the C code that repeatedly invokes the
NPA hardware after making appropriate initializa-
tions. This code is compiled onto the host processor
along with the remainder of the application.

The NPA construction process permits simula-
tion at several intermediate steps. By comparing
these simulation results with those of the original
source code, developers can detect errors in the
input specification as well as errors that the PICO
software introduces. In addition to the RTL arti-
fact, the constructor also generates an RTL test-
bench and memory simulation models for
block-level RTL verification and a cycle-accurate
C model to support system-level verification.

Evaluator
The NPA cost evaluation uses the parameterized

formulas for area and gate count attached to each

component in the macrocell library to estimate the
design’s chip area and gate count. These formulas
have been calibrated for a specific ASIC design-flow
and process technology. The constructor designs the
NPA to a steady-state performance supplied as a
parameter. To compute the overall NPA perfor-
mance, the evaluator makes adjustments for the time
required to fill and drain the pipeline of PEs and for
the delay anticipated due to memory-induced stalls.

VLIW PROCESSOR AND COMPILER DESIGN
PICO-VLIW uses a C application, with test data,

to automatically produce a set of Pareto-optimal, cus-
tom VLIW processor designs. For each design, PICO-
VLIW architects the processor—including the in-
struction format, the execution data paths, and the
instruction unit—and emits structural Verilog/VHDL
for it. In addition, it retargets the Elcor compiler for
VLIW architectures to the newly designed processor.5

Template
The PICO-VLIW template shown in Figure 5

encompasses a broad class of EPIC/VLIW proces-
sors having advanced architectural and microar-
chitectural features.1 Their operation repertoire is
a customized subset of the HPL-PD operation set,6

optionally augmented by user-defined operations.
The processors can issue multiple operations per
cycle executing on multiple FUs. In addition to the
global address space that the main memory and the

Memory FU
op

op
Integer FU

Data path

Control path

Instruction format
0 24 47

src1 src1 dispsrc2 dest1

src1 src2 dest1

dest1

src2src1 disp
T0

add/sub/mult ld/st.disp

src1 src2 dest1 src3dest1dest2src1T1

madd ld.inc

src1 src2 dest1T2

add/sub
Decode

dispa 1 a 2 a 3 a 4 a 5 a 6 a 7

I-unit
control

Integer register file

Instruction cache

Instruction prefetch FIFO

On-deck register

Instruction register

Figure 5. VLIW
processor template.
Although it fixes cer-
tain aspects of the
design, the design
allows flexibility
elsewhere. For
example, every VLIW
processor contains
an integer cluster
consisting of an
integer register file
and a set of integer
functional units con-
nected to it. Option-
ally, the processor
can contain a float-
ing-point cluster
with the same gen-
eral structure.

cache subsystem represent, a processor can use dis-
tinct load and store operations to access one or
more local memories.

HPL-PD specifies four files for organizing the reg-
isters: integer, floating-point, predicate, and branch.
FUs that do not need simultaneous access can share
register file ports. To reduce code size, two or more
FUs that cannot issue operations simultaneously
can share the same bit positions in the instruction
format. This format can consist of several instruc-
tion templates of different lengths to reduce the
number of explicit no-op operations.

Spacewalker
The VLIW spacewalker emits a high-level archi-

tecture specification that specifies the types and sizes
of register files, the operation repertoire as a collec-
tion of operation groups, and an abstract specifica-
tion of the processor’s instruction-level parallelism
as mutual exclusions between operation groups.
Operations in two different operation groups exe-
cute in parallel unless there is a mutual exclusion
between the two groups. Furthermore, operations
within an operation group cannot be issued in par-
allel. In the current implementation, the operation
groups are instances of four operation types—the
integer, floating-point, load-and-store, and branch
operations—and there are no explicit mutual exclu-
sions between operation groups.

The VLIW spacewalker customizes the operation
repertoire to the application: Any operation in HPL-
PD repertoire that the application does not use can
be deleted. Alternatively, we can retain a core set of
operations if required for greater generality.

The VLIW spacewalker’s specification space can
be quite large, and the evaluation of each design point
can be time-consuming because it involves recom-
piling the full application program. Thus, exhaustive
search is impractical, and the spacewalker adaptively
limits its specification space search based on infor-
mation gleaned from the points it has already exam-
ined.7 The key idea is to make incremental changes
to the current design’s parameters and to terminate
the current search direction if all the current design’s
neighbors are non-Pareto designs.

Constructor
The VLIW constructor first generates the least

expensive data path it can, consistent with the con-
currency level the abstract architecture specifica-
tion demands. The constructor uses the specified
mutual exclusions to minimize the number of log-
ical FUs required and to maximize register port
sharing between them. The constructor may use a

single physical FU to implement the union of
operations in mutually exclusive operation
groups. Or, it may use multiple physical FUs
that share register file ports.

The constructor then designs an instruc-
tion format for the processor using mutual
exclusions and compiler feedback. The
instruction format consists of a number of
variable-length instruction templates that
judiciously balance the total code size against
the complexity of the instruction decode and
distribution network.

The constructor uses mutual exclusions to design
a basic instruction format that supports the requi-
site level of concurrency. It also generates an Elcor
machine description, compiles and schedules the
application, and gathers statistics on which sets of
operations are frequently issued together. It uses
these statistics to augment the basic instruction for-
mat with additional templates for operations that
are frequently issued together in order to reduce
the total code size.

The constructor next generates an instruction
unit consisting of the instruction prefetch, align-
ment, and decode hardware customized for this
instruction format using the schema specified in the
VLIW template.

At this point, the detailed design is complete, and
the constructor generates structural Verilog/VHDL.
It also creates the final machine description needed
to retarget the compiler, assembler, and simulator.

Evaluator
The VLIW evaluator estimates chip area and gate

count in the same way as the NPA evaluator. To
estimate the application’s processor runtime, the
evaluator multiplies each basic block’s schedule
length by its profiled execution frequency and sums
the total over all basic blocks. This method pro-
duces an accurate performance estimate for a sta-
tically scheduled processor ignoring stall cycles due
to cache misses. The cache subsystem evaluator is
responsible for computing the additional stall
cycles due to cache misses.

The evaluator also reports the generated object
code’s size to evaluate its incremental effect on the
cost of main memory, which is charged to the
VLIW cost. The code size also affects the evaluation
of instruction cache (I-cache) and unified cache (U-
cache) misses in the I-cache framework.

SYSTEM DESIGN
System framework decomposition is valid only if

the various subsystem frameworks can be inde-

September 2002 45

The spacewalker
adaptively limits its
specification space

search based on
information gleaned

from points it has
already examined.

46 Computer

pendently constructed, evaluated and then
combined to give a reasonable approxima-
tion to the overall system Pareto. PICO’s sys-
tem-level decomposition strategy, therefore,
hinges upon two important factors.

First, subsystem compatibility is captured
by using a set of additional parameters for
each subsystem that participates in interface
constraints during system composition.
Given a family of parameterized subsystem
Pareto sets, the system-level PICO space-
walker combines only compatible VLIW,
cache, and NPA designs into a system-level
Pareto set. In the process, PICO determines

which kernels should be implemented as NPAs
rather than as software routines on the VLIW.

Second, PICO assumes that each subsystem can
be independently evaluated for cost and perfor-
mance using its parameters. This assumption is valid
under certain design constraints that PICO enforces,
and it has been verified both analytically and exper-
imentally. For example, the evaluation of the mem-
ory hierarchy is broken into separate evaluations for
the data cache (D-cache), I-cache, and U-cache. This
decomposition is valid if the U-cache includes all
data contained in the I-cache and D-cache.

PICO uses dilation, an empirical parameter that
is the ratio of the compiled application code size
on the given processor with respect to a fixed ref-
erence processor, to capture the effect of varying
the instruction format of various VLIW processors
over the I-cache and the U-cache instruction
misses.8 Processors with various dilations are eval-
uated independently and then matched with cache
subsystems with the same dilation without the need
to evaluate each processor-cache pair separately.

F ramework-based automation offers a powerful
methodology for automating the design of com-
plex, high-level structures such as processors

and computer systems. It has been crucial to PICO’s
success in designing NPAs and VLIW processors.
We strongly suspect that automated design is possi-
ble only with this sort of methodology.

The restrictions that a parametric template places
on the design space remove enough variability to
make automation possible; the existence of a tem-
plate in turn makes designing automatic spacewalk-
ers, constructors, and evaluators possible. The nature
and number of parameters in the template determine
the framework generality and flexibility. Frameworks
can be quite varied. The template for one framework
might contain RISC processors and DSPs, while

another might contain a vector processor.
Hierarchical design methodology, on the other

hand, makes the problem tractable. Our experience
with hierarchical design indicates that decompos-
ing the evaluator presents a very challenging prob-
lem. Developers can easily decompose a template to
identify the interface constraints and parameters,
and to design spacewalkers and constructors for
the resulting subsystems. Engineering acceptably
accurate subsystem evaluators requires judicious
decomposition. We believe that this is the most
important research problem in hierarchical design.
Until this problem is solved in an adequately gen-
eral manner, developers of complex systems might
need to restrict themselves to frameworks that eas-
ily lend themselves to hierarchical evaluation.

Engineering disciplines tend to go through fairly
predictable phases: ad hoc, formal and rigorous,
and automation. When the discipline is in its
infancy and designers do not yet fully understand
its potential problems and solutions, a rich diversity
of poorly understood design techniques tends to
flourish. As understanding grows, designers sacri-
fice the flexibility of wild and woolly design for
more stylized and restrictive methodologies that
have underpinnings in formalism and rigorous the-
ory. Once the formalism and theory mature, the
designers can automate the design process. This life
cycle has played itself out in disciplines as diverse
as PC board and chip layout and routing, machine
language parsing, and logic synthesis.

We believe that the computer architecture disci-
pline is ready to enter the automation phase.
Although the gratification of inventing brave new
architectures will always tempt us, for the most part
the focus will shift to the automatic and speedy
design of highly customized computer systems
using well-understood architecture and compiler
technologies. �

Acknowledgments
We thank past members of our group: Scott

Mahlke, Mike Schlansker, Santosh Abraham, Greg
Snider, Sadun Anik, and Richard Johnson. Alain
Darte and Lothar Thiele made certain key theoret-
ical contributions. The following research interns
accelerated PICO software development: Frederic
Vivian, Bruce Childers, Marnix Arnold, Matthew
Jennings, Roderic Rabbah, Timothy Sherwood,
Rajiv Ravindran, Guillaume Huard, Luca Ceresoli,
Kevin Fan, and Benoit Meister. We thank Henk
Corporaal for providing the code for the attractive
GUI to his MOVE infrastructure, from which we

Framework-based
automation offers

a powerful
methodology for
automating the

design of complex
processors and

computer systems.

developed PICO’s GUI, and Wen-mei Hwu and his
IMPACT group for providing Elcor’s machine-
independent front end.

References
1. M.S. Schlansker and B.R. Rau, “EPIC: Explicitly Par-

allel Instruction Computing,” Computer, Feb. 2000,
pp. 37-45.

2. S.G. Abraham and B.R. Rau, “Efficient Design Space
Exploration in PICO,” Proc. Int’l Conf. Compilers,
Architecture, and Synthesis for Embedded Systems
(CASES 2000), ACM Press, New York, 2000, pp. 71-
79.

3. R. Schreiber et al., “PICO-NPA: High-Level Synthe-
sis of Nonprogrammable Hardware Accelerators,”
J. VLSI Signal Processing, vol. 31, 2002, pp. 127-
142.

4. S. Aditya and M.S. Schlansker, “ShiftQ: A Buffered
Interconnect for Custom Loop Accelerators,” Proc.
Int’l Conf. Compilers, Architecture, and Synthesis
for Embedded Systems (CASES 2001), ACM Press,
New York, 2001; http://hplabs.hp.com/research/itc/
car/Templates/carpapers-hpl.html#2001.

5. S. Aditya, B.R. Rau, and V. Kathail, “Automatic Archi-
tectural Synthesis of VLIW and EPIC Processors,”
Proc. Int’l Symp. System Synthesis (ISSS 99), IEEE CS
Press, Los Alamitos, Calif., 1999, pp. 107-113.

6. V. Kathail, M.S. Schlansker, and B.R. Rau, HPL-PD
Architecture Specification: Version 1.0, tech. report
HPL-93-80R1, Hewlett-Packard Laboratories, Palo
Alto, Calif., 2000; http://www.hpl.hp.com/techreports/
93/HPL-93-80R1.html.

7. G. Snider, Spacewalker: Automated Design Space
Exploration for Embedded Computer Systems, tech.
report HPL-2001-220, Hewlett-Packard Laborato-
ries, Palo Alto, Calif., 2001; http://www.hpl.hp.com/
techreports/2001/HPL-2001-220.html.

8. S.G. Abraham and S.A. Mahlke, “Automatic and
Efficient Evaluation of Memory Hierarchies for
Embedded Systems,” Proc. 32nd Ann. Int’l Symp.
Microarchitecture (MICRO 99), IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 114-125.

Vinod Kathail is a principal research scientist and
manager in the Compiler and Architecture
Research Program at Hewlett-Packard Laborato-
ries. His research interests include parallel com-
puter architectures, compilers, programming
languages, and automated design of custom com-
puter systems. He received an ScD in electrical engi-
neering and computer science from MIT. He is a
member of the IEEE and the ACM. Contact him at
vinod_kathail@hp.com.

Shail Aditya is a senior research scientist in the
Compiler and Architecture Research Program at
Hewlett-Packard Laboratories. His research inter-
ests include programming language design, multi-
threaded and VLIW compilers and processor
architectures, embedded system design, and design
automation. He received a PhD in electrical engi-
neering and computer science from MIT. He is a
member of the IEEE Computer Society. Contact
him at aditya@hpl.hp.com.

Robert Schreiber is a principal scientist in the Com-
piler and Architecture Research Program at
Hewlett-Packard Laboratories. His research inter-
ests include scientific computing, sequential and
parallel algorithms for matrix computation, embed-
ded computer systems, and compiler optimization
of parallel programs. He received a PhD in com-
puter science from Yale University. He is a member
of SIAM and the ACM. Contact him at
schreiber@hpl.hp.com.

B. Ramakrishna Rau is an HP Fellow and director
of the Compiler and Architecture Research Pro-
gram at Hewlett-Packard Laboratories. His
research interests include computer architecture,
compilers, operating systems, and the automated
design of computer systems. Rau received a PhD in
electrical engineering from Stanford University. He
is a Fellow of the IEEE and a member of the ACM.
Contact him at rau@hpl.hp.com.

Darren C. Cronquist is a research scientist in the
Compiler and Architecture Research Program at
Hewlett-Packard Laboratories. His research inter-
ests include reconfigurable computing, high-level
synthesis, compilers, and embedded systems. He
received a PhD in computer science from the Uni-
versity of Washington. He is a member of the IEEE
and the ACM. Contact him at Darren_cron-
quist@hp.com.

Mukund Sivaraman is a research scientist in the
Compiler and Architecture Research Program at
Hewlett-Packard Laboratories. His research inter-
ests include computer architecture, high-level syn-
thesis, timing verification, delay-fault testing, and
design automation of computer systems. He
received a PhD in electrical and computer engi-
neering from Carnegie Mellon University. He is a
member of the IEEE and the ACM. Contact him
at mukund@hpl.hp.com.

September 2002 47

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

